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Abstract. We describe theoretically the main characteristics of the steady state regime of a type II Optical
Parametric Oscillator (OPO) containing a birefringent plate. In such a device the signal and idler waves
are at the same time linearly coupled by the plate and nonlinearly coupled by the χ(2) crystal. This mixed
coupling allows, in some well-defined range of the control parameters, frequency degenerate operation as
well as phase locking between the signal and idler modes. We describe here a complete model taking
into account all possible effects in the system, i.e. arbitrary rotation of the waveplate, non perfect phase
matching, ring and linear cavities. This model is able to explain the detailed features of the experiments
performed with this system.

PACS. 42.65.-k Nonlinear optics – 42.65.Yj Optical parametric oscillators and amplifiers – 42.60.Fc Mod-
ulation, tuning, and mode locking – 42.25.Lc Birefringence

1 Introduction

In a type II OPO, signal and idler fields of crossed polar-
izations are generated when the pump exceeds a certain
threshold. Energy conservation requires that ω0 = ω1+ω2,
where ω0, ω1 and ω2 are respectively the pump, signal
and idler frequencies. The precise values of the signal and
idler frequencies are set by the conditions of equal cav-
ity detunings and minimum oscillation threshold, which
depend on the value of the phase matching between the
three waves, and on the vicinity of cavity resonances for
the signal and idler modes. Theses frequencies are deter-
mined unambiguously when one knows the values of two
control parameters of the OPO, namely the crystal tem-
perature (which sets the value of the different indices) and
the cavity length (which determines the cavity resonance
conditions). Frequency degeneracy, i.e. ω1 = ω2 = ω0/2,
occurs only accidentally since it corresponds to a single
point in the parameter space. It cannot be achieved for
a long time in real experimental conditions, as these pa-
rameters drift in time. Furthermore, even when the device
is actively stabilized on the frequency degeneracy working
point, the signal and idler fields still undergo a phase diffu-
sion phenomenon, similar to the Schawlow-Townes effect
in a laser [1,2], but acting on the difference between the
phases of the signal and idler modes in the case of the
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type II OPO. As a result, the output field polarization
direction slowly drifts with time.

In the context of quantum information and genera-
tion of EPR correlated bright beams, where both ampli-
tude and phase correlations are involved, phase locking is
interesting since it allows a much simpler measurement
of amplitude and phase quantum correlations between
the signal and idler beams [3] even above threshold: the
measurement of intensity quantum correlations between
the signal and idler modes can be done even with non-
frequency degenerate beams [4] but the measurement of
phase correlations makes it necessary to use a local os-
cillator. Thus a phase reference is defined and signal and
idler must be stable compared to this reference, which is
not the case in a regular, above threshold, type II OPO.

A few years ago, Wong et al. had the idea of achiev-
ing the frequency degenerate operation at the output of a
type-II OPO by introducing a linear coupling between the
signal and idler fields. This coupling was made by way of
a birefringent quarter-wave plate placed inside the OPO
linear cavity which couples the two orthogonally polarized
signal and idler waves. In this way, they generated intense
and stable frequency degenerate signal and idler beams [5].
The theoretical model described in reference [6] was able
to account for the main features of this phenomenon, but,
for the sake of simplicity, it was made for a ring cavity,
for a small angle between the crystal neutral axes and the
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birefringent plate neutral axes, and without any phase-
shifts introduced by the reflection on the cavity mirrors
or by non perfect phase matching.

Most experiments use linear cavities, whereas most
theoretical treatments assume ring cavities. For scalar
fields there is almost no difference between the two config-
urations (the crystal in the ring cavity being taken twice as
long as the linear cavity), if one neglects the cavity mirror
differential phase-shifts. This is no longer the case when
polarization effects are taken into account: in this case, a
matrix formalism is needed, and the exact succession of
the different elements in the cavity is now important, as
they are described by non-commuting matrices. It is also
interesting to examine the regime when the birefringent
plate angle is not limited to small values. It seems also
important to take into account the mirror phase shifts,
which are known to induce a significant change in the
phase matching between the three waves and consequently
in the oscillation threshold of the linear cavity OPO [7].
The purpose of the present paper is to introduce all these
refinements in the theoretical model introduced in [6], and
also to discuss the properties of the phase-locked OPO
in terms of the actual control parameters of the device,
which are the cavity length and the crystal temperature.
This paper is followed by a second one [3] in which the
quantum fluctuations and correlations between the signal
and idler fields are determined and studied in the same
configuration.

In Section 2, we introduce and describe the behavior
of the different elements placed inside the OPO cavity. We
then determine and discuss in Section 3 the steady-state
regime in the ring cavity case. Finally, in Section 4, we
examine and discuss the steady state regime in the linear
cavity case.

2 Linear and nonlinear elements in the OPO
cavity

We consider here a χ(2) crystal with a type II phase match-
ing, which means that the signal and idler fields have
orthogonal polarizations. The crystal length is l and its
indices of refraction are n1 and n2 respectively for the sig-
nal (ordinary) and idler (extraordinary) waves which are
supposed to be frequency degenerate. The non degenerate
case will be studied elsewhere [8].

Assuming a small variation of the various field ampli-
tudes inside the nonlinear medium, which is quite reason-
able in a c.w. OPO, one can solve in an approximate way
the propagation equations inside the crystal, and obtain
to the second order in the non-linearity, g:

A0(l) = A0(0) − g exp
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Fig. 1. ρ is the angle between the crystal’s axes ((C1, C2),
black lines) and the waveplate axes ((W1, W2), grey lines).
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in which A0 is the envelope amplitude of the pump field
and the Ai, i = 1, 2 are the envelope amplitudes of the
down converted fields, assumed to be plane waves, along
the crystal axes (C1: ordinary wave, C2: extraordinary
wave); the envelopes are normalized in such a way that
|Ai|2 gives the photon flow (photonm−2 s−1); g is the non-
linear coupling coefficient given by

g = lχ(2)

√
�ω0ω1ω2

2c3ε0n0n1n2
(2)

and f(x) = exp(ix)(exp(ix) − sinc(x))/ix. The crystal
input-output equations are then, when one expresses the
pump field at the center of the crystal:

A1(l) = A1(0) + g′A0

(
l

2

)
A∗

2(0)

A2(l) = A2(0) + g′A0

(
l

2

)
A∗
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where g′ = g exp (i∆kl/2) sinc (∆kl/2). The advantage of
this expression is that it is valid to the second order in the
non-linearity g′.

The second element in the cavity is the birefringent
wave plate. It has a thickness e and its indices of refraction
are ne and nf at frequency ω0/2 respectively for the slow
and fast axes which make an angle ρ with the crystal axes
(see Fig. 1).

Its effect will be described in the Jones matri-
ces formalism [9] in the nonlinear crystal axes basis.
The transmission through the wave plate can be written
as the matrix:

M = eikne
(
α ε
ε α∗

)
(4)

where
n =

ns + nf
2

(5)
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Fig. 2. Set-up of the ring cavity; we consider only one direction
of propagation.

represents the mean index of refraction of the waveplate,
and

α = cos
(
∆φ

2

)
+ i cos(2ρ) sin

(
∆φ

2

)
(6)

ε = i sin
(
∆φ

2

)
sin(2ρ) (7)

where ∆φ = k(ns − nf )e is the waveplate birefringent
phase-shift. Let us set α = α0e

iψ where (α0, ψ) ∈ R
2.

For the sake of simplicity, we will assume that this plate
has no effect on the pump field polarization, i.e. acts as a
λ waveplate at the pump frequency.

3 Ring cavity type II OPO

We assume in this section that the cavity has a ring shape
(Fig. 2), and that the coupling mirror has large reflection
coefficients for signal and idler modes (r1 and r2). The
moduli of the amplitude reflection coefficients of the cou-
pling mirror are taken equal for the signal and idler modes:
|r1| = |r2| = r = 1 − κ, with κ � 1, so that the trans-
mission is |t| ≈ √

2κ. µ is the round-trip loss coefficient
for the signal and idler waves (due to crystal absorption,
surface scattering, other mirror finite transmission...), as-
sumed to be small. We define a generalized reflection co-
efficient: r′ = r(1 − µ) ≈ 1 − (µ + κ). We will call ζ1
and ζ2 the phase-shifts introduced by the reflection on
the cavity mirrors for the signal and idler waves so that
rj = r exp(iζj), j = 1, 2. In all the article, we do not take
into account the resonance of the pump mode: all equa-
tions are given for the pump field inside the crystal and
we only calculate operating thresholds (not signal or idler
intensities) normalized to the intracavity pump threshold
of the OPO without the waveplate (standard OPO thresh-
old), σ0. The free propagation length inside the cavity is
denoted L.

As the signal and idler fields are assumed to have
the same frequency, the birefringent plate and the non-
linear crystal couple the same fields, which are the ordi-
nary and extraordinary waves at frequency ω0/2, and only
three complex equations are needed to describe the sys-
tem. From equations (3) and (4), one readily obtains the
following steady state equations for the field amplitudes

A1 = A1(0) and A2 = A2(0):

A1 = r′α0e
i(δ−θ/2+ψ) (A1 + g′A0A

∗
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∗
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∗
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+ r′εei(δ−θ/2) (A1 + g′A0A
∗
2) (8)

where
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is the mean round-trip phase-shift, and θ = (ω0/2c)(n1 −
n2)l+ ζ1− ζ2 is the birefringent phase-shift introduced by
the non-linear crystal and by the mirrors.

One immediately observes that these equations are not
invariant under the gauge transformation A1 −→ A1e

iϕ,
A2 −→ A2e

−iϕ, as is the case for the usual equations
of a non-degenerate OPO without birefringent mixing.
This implies that, unlike in the usual OPO, the phases of
the signal and idler amplitudes solutions of equations (8),
when they exist, are perfectly determined: phase-locking
has occurred between the two oscillating modes, and
there is no phase diffusion effect. This phase-locking phe-
nomenon is common to all linearly coupled oscillators [10].

Since the effect of the different elements on the polar-
ization is described by matrices which do not commute,
one expects that the system depends on the plate position.
However, it is straightforward to show that exchanging the
positions of the waveplate and of the crystal amounts to
a rotation of π/2 of the crystal which is equivalent to ex-
changing indices 1 and 2. This does not change the physics
of the system so that we will place ourselves in the case
where the waveplate is located after the crystal with re-
spect to the input beam.

Equations (8) have been solved analytically in the
small angle regime ρ � 1 and for small cavity detunings
and losses in reference [6].

We will present here the properties of the more com-
plex analytical solutions obtained without any approxi-
mations: we will not give the complicated expressions of
the solutions, but instead give plots of the most striking
results. The exact expressions for the different parameters
in the case of a small angle are given in Appendix.

The real and imaginary parts of (8) form a set of two
linear equations for the amplitude and phase of the field
envelopes A1, A2. Thus, one obtains a set of four linear
equations with four variables. A non-zero solution of this
system exists only when the corresponding 4 × 4 deter-
minant is zero. This condition gives a real equation for
the system parameters, which is fulfilled only in a spe-
cific operating range, or locking zone, for the self-phase-
locked OPO. In the locking zone, this equation has two
real solutions for the intracavity pump intensity, corre-
sponding to two possible regimes of the system [5]. In this
paper, we will focus our attention to the regime of lower
threshold. These solutions give the oscillation threshold
for the intracavity pump power as a function of the crystal
temperature, the cavity length and the waveplate angle.
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Fig. 3. (a) Locking zone as a function of the cavity length
(δL) and of the crystal temperature (δT ) for waveplate angle
ρ = 1◦ (light grey) and ρ = 5◦ (dark grey); σ = 3. (b) σth as a
function of the cavity length (δL) for δT = 0.2 K. For σ = 3,
this corresponds to the cross-section AA’ of the locking zone.
∆φ = π.

We define σ as the ratio of the intracavity pump power
to σ0 and σth as the ratio of the intracavity pump power
threshold to σ0. If, for a given set of parameters, σ is
larger than σth, one obtains frequency degenerate oscil-
lation. One can thus plot the values of cavity length and
crystal temperature for which σth is smaller than σ so
that there is degenerate oscillation. Figure 3a displays the
locking zones for two values of the wave plate angle ρ as a
function of δT = T−Tdeg and δL = L−Ldeg, where Tdeg is
the temperature for which the exact frequency-degenerate
operation occurs without any birefringent coupling and
Ldeg the corresponding cavity resonance length. The lock-
ing zone consists of two surfaces which overlap for small
values of ρ. Figure 3b shows the cross-section AA’ of the
locking zone for a given value of δT , that is σth as a func-
tion of δL. All curves in this paper are plotted in the case
of KTP for which the index of refraction vary with the
following dependence [11]:

dn1

dT
= 1.3×10−5 K−1 and

dn2

dT
= 1.6×10−5 K−1. (9)

Figure 3a shows that the locking zone extension increases
as a function of ρ. However, the minimum threshold does

Fig. 4. Locking zone as a function of cavity length and crys-
tal temperature. The thin dark grey line corresponds to a λ/2
waveplate while the light grey zone corresponds to a λ/4 wave-
plate. ρ = 5◦, σ = 2.

not increase with ρ and a threshold equal to the standard
OPO threshold can always be found for δT = 0. For δT �=
0, the minimum threshold as a function of δL is no longer
equal to one (see Fig. 3, bottom).

For a given value of ρ, the coupling parameter ε =
i sin(∆φ/2) sin(2ρ) is maximized for ∆φ = π that is for
a λ/2 waveplate. As shown in Figure 4, a different value
for ∆φ will reduce the locking zone extension but does not
change the general shape. In order to maximize ε and thus
the locking zone extension, one can set ∆φ = π and ρ =
45◦. In this case, the locking zone is infinite, in practice
only limited by the phase matching.

As the locking zone depends on the temperature, it
may be important to take into account the phase match-
ing. However for small values of the waveplate angle, the
locking zone extension in δT is small so that the effect
of ∆k �= 0 remains small. As ρ is increased, this effect
becomes noticeable and limits effectively the extension of
the locking zone to a zone δT ≈ 10 K. We have plotted in
Figure 5 σres, the threshold on resonance: it corresponds
to the minimum value of σ as a function of δL for a fixed
value of δT . One notices on this figure that σres is pe-
riodic in δT if one does not take into account the phase
matching: this is due to the periodicity in temperature of
the crystal birefringence. When one takes into account the
phase matching, this periodicity disappears (grey curve).

For realistic parameters, such as R = 90% and σ = 2,
the transverse width of the locking zone is ∆L ≈ λ/F ≈
10 nm where F is the cavity finesse and ∆T ≈ 50 mK.
These values give the conditions on the length and tem-
perature control loops to remain within the locking zone.
These constraints are compatible with the current perfor-
mances of length and temperature controls.
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Fig. 5. Normalized threshold on resonance σres as a function
of the temperature for ρ = 30◦. The black curve corresponds
to the result obtained without taking into account the phase
matching multiplied by 50 for readability of the figure. The
grey curve is plotted taking into account the phase matching.

Fig. 6. Set-up of the linear cavity type II OPO.

4 Linear cavity type II OPO

In this section, we study the linear cavity case which is
actually used in most experiments. We show here that the
linear and ring cavity OPO have different behaviors when
one takes into account the reflection phaseshifts on the
cavity mirrors for the different interacting waves.

One mirror, M1 is highly reflective for signal and idler
and serves as a coupling mirror for the pump while the
other mirror, M2 is highly reflective for the pump and
serves as a coupling mirror for signal and idler (Fig. 6).
The phase of the reflection coefficient for signal and idler
are taken equal.

We redefine the waveplate coupling constants since the
signal and idler beams pass two times in the waveplate1:

α = cos(∆φ) + i sin(∆φ) cos(2ρ) = α0e
iψ (10)

ε = i sin(∆φ) sin(2ρ) (11)

∆φ/2 being replaced by ∆φ.
As mentioned in the introduction and in the previ-

ous section, the linear cavity OPO has distinct features
when compared to the ring cavity while the triple res-
onance does not change the behavior of the system. In
the linear cavity the beams undergo two interactions per
round-trip. As the phase is important in a parametric in-
teraction the phase-shift between signal and idler and the
pump beam between the two nonlinear interactions in the
crystal must be taken into account. The equations for the

1 The free propagation and reflection on the coupling mirror
simply shift the two waves by the same phase which does not
change the effect of the waveplate.

Fig. 7. Locking zone as a function of cavity length and crystal
temperature for two values of ξ: top ξ = 0, bottom ξ = π/4.
The other values are the same: ρ = 5◦, σ = 3.

field envelopes at face (a) of the crystal can be written to
the first order in g′:

A1 = α0r
′ei(δ−δ

′)[A1 + (1 + eiξ)g′A0A
∗
2]

+ εr′eiδ[A2 + (1 − eiξ)g′A0A
∗
1]

A2 = α0r
′ei(δ+δ

′)[A2 + (1 + eiξ)g′A0A
∗
1]

+ εr′eiδ[A1 + (1 − eiξ)gA0A
∗
2] (12)

where

δ =
ω0

2c
(2ne+ 2n̄l + 2L) + ζ1 + ζ2 (13)

δ′ = θ − ψ (14)

δ0 =
ω0

c
(2n0l + 2L) + ζ0 (15)

ξ =
ω0

2c
(2n0 − 2n̄)l − ω0

c
n(2e) + ζ0 − 2ζ2 (16)

2L is the total round-trip free propagation length. n̄ and θ
have been defined in Section 3.

One sees on the first two equations of expression (12)
that when the phase-shift ξ is taken equal to 0, the equa-
tions are similar to the ring cavity case2, but with a crys-
tal of double length (factor 2g′). This is no longer the case
when this parameter is changed. A non-zero value of ξ has
been shown to increase the threshold of a standard OPO
by a significant amount [7]. In the case of a linear cavity
with a birefringent element, a dissymmetry appears in the
equations due to the terms 1± eiξ. Figure 7 shows an ex-
ample of the results obtained: one notices the dissymmetry
between the two locking zones.

Figure 8 presents the value of the threshold on reso-
nance, σres as a function of the temperature δT and the
phase-shift ξ for ρ = 5◦. One observes that this thresh-
old is no longer obtained for δT = 0 as is the case for
a ring cavity. For small values of ρ and ξ, σres remains
reasonable (σres < 3) inside a temperature range of ap-
proximately 1 K. This value is small compared to the pure
phase matching temperature range of 15 K. However, as ξ

2 When one neglects the second order term in εg if ρ is taken
to be small.
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Fig. 8. Normalized threshold on resonance σres as a function
of the crystal temperature δT and of the phase-shift ξ for ρ =
5◦. Unshaded surfaces correspond to values of (δT, δL) where
frequency degenerate operation is not possible.

Fig. 9. Normalized threshold on resonance σres as a function of
the crystal temperature δT and of the phase-shift ξ for ρ = 45◦

(top). Same curve optimized for δT (bottom).

increases and goes to π, σres diverges: as ξ is fixed by the
exact mirror dielectric structure, it is not adjustable ex-
perimentally (except by changing the mirrors): this can be
a severe limitation to operation of the phase-locked OPO
for small values of the waveplate angle ρ.

When ρ is increased, the locking zone size increases
and a larger range of temperature can be used with a low
threshold. Figure 9 shows the behavior of the normalized
threshold on resonance σres as a function of ξ and δT
for ρ = 45◦. In this case, the minimum value of σres is

obtained for ξ = π and δT = 0. When ξ is lowered to 0,
σres increases. The maximum value of σres is obtained for
ξ = 0 and two values of the temperature: it is equal to
1.92 times the standard OPO threshold. This increase by
a factor 1.92 is also found for ξ = π in the case of the
standard OPO [7].

5 Conclusion

We have studied a system composed of an Optical Para-
metric Oscillator containing a birefringent waveplate in-
side the optical cavity. As shown previously [5,6], this sys-
tem allows phase locking of the signal and idler fields.
We have obtained equations that are valid for all wave
plate angles as well as in different cavity configurations,
namely ring or linear cavities. We have shown that the
zone where phase locking occurs can be described by the
cavity length and the crystal temperature and consists of
two zones. As the waveplate angle is increased, the size of
the locking zone increases. The optimal configuration is
obtained by inserting a λ/2 waveplate in a ring cavity or
a λ/4 waveplate in a linear cavity with a 45◦ angle with
respect to the crystal’s axis. In the case of a ring cav-
ity, the minimum threshold is obtained for a temperature
such that the crystal birefringence compensates all the
other birefringence in the cavity (waveplate and mirrors)
and is equal to the standard OPO threshold. The effect
of phase mismatch between the three waves is small for
small values of the waveplate angle since the locking zone
extension in temperature is small. As ρ is increased, the
effect of phase mismatch becomes noticeable and limits in
practice the extension of the locking zone. In a linear cav-
ity, the mirrors phase-shift modifies the minimum thresh-
old which becomes dependent on the waveplate angle and
can become twice as large as the standard OPO thresh-
old. This increase is known even in standard OPOs but
a linear cavity is usually chosen for experimental reasons
(losses, mechanical stability. . . ). In both cases (standard
and self-phase-locked OPO), this increase is accompanied
of a shift in the optimal crystal temperature which may
be large and must be taken into account to operate the
OPO at low threshold.
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and the Université Pierre et Marie Curie, is associated with
the Centre National de la Recherche Scientifique. This work
was supported by European Community Project QUICOV
IST-1999-13071. T. Coudreau is also at the Pôle Matériaux
et Phénomènes Quantiques FR CNRS 2437, Université Denis
Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France.

Appendix

We give here the exact expression for the lower oscillation
threshold in the case of a ring cavity:

Ith =
u−√

v

g′2r′2
(17)
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with

u = ε2 + r′2 − 2r′α0 cos(δ) cos
(
θ

2
− 2ψ

)
+ α0

2 cos (θ − 2ψ) (18)

v =
[
r′2 + ε20 − 2r′α0 cos(δ) cos

(
θ

2
− ψ

)

+ α2
0 cos2(θ − 2ψ)

]2

− 1 − r′4 − 2r′2α2
0

− 2r′
{
r′ cos(2δ) + α0

[
r′α0 cos(θ − 2ψ) − 2

(
1 + r′2

)

× cos(δ) cos
(
θ

2
− ψ

) ]}
(19)

with the parameters defined in the text.
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